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SYMBOLS

a speed of sound, ft/sec.

CDo zero lift drag coefficient

CL lift coefficient

D drag divided by weight

DL  drag due to lift divided by weight

D zero lift drag divided by weight

DL1 drag due to lift divided by weight evaluated at lift equal to weight

D' drag, lbs.

E specific energy, sec2 .

F thrust less zero lift drag, divided by weight

g acceleration due to gravity

go acceleration due to gravity at sealevel

h altitude divided by g , sec2.

h' altitude, ft.

H Hamiltonian function

part of Hamiltonian containing control

L lift divided by weight

L' lift, lbs.

M Mach number

r radius of earth, ft.

S reference area, ft2 .

t time, sec.

T thrust divided by weight

T' thrust, lbs.

i



u sine of the flight path angle

V velocity divided by g , sec.

V' velocity, ft/sec.

W airplane total weight, lbs.

x' component of position vector measured along fundamental parallel, ft.

y' component of position vector measured along fundamental meridian, ft.

a angle of attack, deg.

8 weight flowrate, lbs/sec.

y flight path angle, deg.

n drag due to lift factor

6 bank angle, deg.

X. adjoint variable associated with state variable i
1

p atmospheric density, slugs/ft3.

T thrust off-set angle, deg.

time-to-climb, sec.

4* minimum time-to-climb, sec.

X heading angle, deg.

ii



APPROXIMATIONS IN THE MINIMUM
TIME-TO-CLIMB PROBLEM

Mark D. Ardema

Ames Research Center, Moffett Field, Calif. 94035

SUMMARY

The minimum time-to-climb problem is formulated as a third order

system and three approximate solutions based on reduced order systems

are presented. The first of these is the often used energy state, the

second is the less frequently used two state and the third is a slightly

altered form of the second, herein called the modified two state. These

three approximations are discussed and compared both qualitatively and,

by using a numerical example, quantitatively. The numerical example is

also solved by the steepest descent method to provide a basis for com-

parison. It is concluded that the modified two-state approximation is

significantly better than the other two. This approximation is used to

assess the sensitivity of climb performance to various vehicle param-

eters and it is found that, as expected, thrust and weight influence the

time-to-climb most strongly.

INTRODUCTION

In the early years of flight, when aircraft speeds were relatively

low, performance optimization of aircraft was studied on a steady-state
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basis. With the advent of high-speed aircraft, however, dynamic effects

could no longer be neglected. Consideration of all dynamic effects leads

to problems of such computational complexity that the effort expended in

their solution is often not warranted for the purposes of preliminary

performance estimation, and thus approximate solutions have been sought.

The earliest and most widely used of these approximations is that

of energy state, sometimes called energy climb. This approximation was

proposed by Lushl and applied to the minimum time-to-climb problem by

Rutowski2 . Systematic application of this approximation to several air-

craft performance optimization problems, including minimum time-to-climb,

is presented in reference 3. In this approximation, only the energy is

treated as a state variable and velocity (or altitude) plays the role of

a control variable. Boundary conditions are met by adjoining constant

energy paths to the optimal path.

Another approximation, called the two state in this paper, has also

been used, but to a much lesser extent. In this approximation, drag due

to lift is ignored. Altitude and energy (or velocity) are state variables

and flight path angle is the control variable. Thus boundary conditions

on altitude and velocity may be satisfied; however, the flight path angle

will be discontinuous.

In this paper, the minimum time-to-climb program is first precisely

stated and the necessary conditions for optimal control are determined

by employing Pontryagin's maximum principle. 4,5 ,6 The concept of a

singular approximation is then introduced and it is shown that the two

possible singular approximations are just the two previously mentioned.

These two approximations are.discussed and compared both qualitatively

and, using a numerical example, quantitatively.
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A third approximation is proposed called the modified two state,

which is based on the two state but includes drag due to lift and

accounts for the time required to change flight path angle. Comparison

with the two-state approximation shows that inclusion of drag due to

lift has a negligible effect but that the time to change the flight path

angle is significant, particularly at high speeds. The modified two-

state approximation is used to assess the sensitivity of climb perform-

cance to various vehicle parameters for a specific numerical example.

1. MINIMUM TIME-TO-CLIMB PROBLEM

The most general system of equations of motion commonly employed

in aircraft trajectory computations is the following seventh order system

which describes a variable weight point mass moving over a spherical

non-rotating earth (c.f., ref. 7):

V'r
= o cos y cos X

ro+h' cos y'/r

V'r0

Y' = O cos y sin X
ro+h'

h' = V' sin y

goT' goD '

' = - -cos (a + t) - - g sin y (1.1)

S= [L' + T' sin (a + T)] sin 8
cosy

= [L' + T' sin (a + T)] cos e - cos y + V- cos
WVV' r+h'c

wr = -B
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where T' = T'(h',V',B,a), L' = L'(h',V',a), D' = D'(h',V',a), g = g(h')

and - and go are given constants. In these equations, the state vector

is (x',y',h',V',,y,W) and the control vector is (a,B,e).

For the purposes of the present paper, the following simplifying

assumptions are made*: 1) ro  ("flat earth" assumption), 2) W is

constant, 3) T = 0, 4) g(h') = g , 5) T' is not a function of a, 6)

T'cos a = T' and L'+T' sin a = L'. In addition, it is clear that for

the minimum time-to-climb problem that B should be set to its maximum

value (this will be considered further later) and that if boundary con-

ditions on x', y', and x are not specified then only planar motion, say

x'=constant, need be considered. Using these assumptions and noting that

if range is to be neither constrained nor optimized then it is uncoupled

from the rest of the system, the following system is obtained:

h' = V' sin y

'= -- (T' - D') - g sin y (1.2)

y = WV' V- cosy

The decrease in system order which results from the uncoupling of the

range equation makes the minimum time-to-climb problem relatively easy

to solve compared with other performance optimization problems. Making

the change of variables

V = V'/g , h = h'/g , T = T'/W, D = D'/W, L = L'/W (1.3)

*These assumptions have been found to be well-founded for many problems

of interest. They have been made here for simplicity and do not affect

the subsequent developments.
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in (1.2) results in

= V sin

= T - D - sin y (1.4)

y = . (L - cos y),

where T(h,V) and D(h,V,L) are known functions. Let

D(h,V,L) = D (h,V) + DL(h,V,L)

F(h,V) = T(h,V) - D (h,V)

Then (1.4) becomes

= V sin y

= F - DL - sin y (1.6)

* 1
y = V (L - cos y)

For the purpose of discussing approximations, it is advantageous to

introduce the energy variable E, defined by

E = 1 V2 + h (1.7)
2

and use it to replace V in the equations of motion. Differentiating

(1.7) and using (1.6) leads to the system

h = V sin y

= V (F - DL) (1.8)

Y 1 (L- cos y)

where

V = V(h,E) = V2(E - h) (1.9)

and F = F(h,E),.DL = DL(h,E,L).

The minimum time-to-climb problem is now stated as follows:

Suppose that there exists a region 0 of (h,E,L) space such that in 0

we have 1) DL as a function of L is even, DL = 0 for L = 0, and
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2DL

a - > 0, 2) F - DL > 0, and 3) E-h > 0. It is desired to find the

control history L(t) such that among all control histories which trans-

fer the system (1.8) from the values h , E0 at time t = 0 to the values

hf, Ef at the time t = c (the case of specified yo and yf will be dis-

cussed later) such that the trajectories are entirely contained in 0,

L(t) minimizes the transfer time *. The existence of such an optimal

control is assumed. The maximum principle of Pontryagin
4'5' 6 will now

be used to obtain the extremal controls, one of which must be the

optimum control. If the extremal control is unique it will be the

optimal control.

The H function for the problem (1.8) is

H = X + XhV sin y + XE V(F - DL) + X (L - cos y) (1.10)

The adjoint variables satisfy

*h h' sin y - VE (F- DL - D E

+ X I-EE (L - cos y)

XE h h siny - E)h (F - DL E E h

+ X h (L - cos y) (1.11)

* 1
S= - V cosy sin y

y h Y V

The transversality conditions give the boundary values for (1.8) and

(1.11) as

h(O) = ho  h(o) = hf

E(0) = Eo  E(4) = Ef (1.12)

X (0) = 0 X (0) = 0y y
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The part of H which contains the control L explicitly is
1\ 1

EL (1.13)H = - AEVDL + V-L (1.13)

and the optimality condition is

L = arg Max H (1.14)

The various cases which may arise are discussed in ref. 8. If the

energy of the final state is greater than that of the initial state

it is reasonable to assume that XE > 0 since XE may be viewed in most

cases* as the negative sensitivity of trajectory time 4 to energy level

E. Therefore in the sequel it will be assumed that XE > 0; this

condition must be verified for any candidate solution. Under this

assumption, (1.14) becomes

" aDH - L 1
-- =  XV - = 0 (1.15)
L E BL y V

provided this gives trajectories in region 0.

If T(h,V,.) is a monotonically increasing function of 8 subject to

0:58:M, the condition XE > 0 implies from (1.10) that 8 = 8M on

optimal trajectories.

For later reference, the classes of trajectories called zoom climbs

(y = +900) and dives (y = -90*) will be investigated with regard to the

necessary conditions. From (1.8c) L=O on such trajectories and from

(1.11c)

- 1
y Y V

Thus, using (1.12),

it 1Xy(t) = X (0)e ; = 0

*Conditions for which this is true are discussed in ref. 4.
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This solution satisfies the condition (1.14) if XE > 0. The state

equations are now

h = _V

E=VF

the adjoint equations are

h h ) E )E F - E )E

(2E _ ( ) (V -F
E = h ( h h E h

and H is

H = XAo±hV + XEVF

Noting that

V=FT1

(2av 1 V )
\h/E /2 (E - h) '-\  V h

S F F
9h DE

we form H= 0 to get

0 = ± hV ±hV + EVF + XEVF + XEVP

0 = Ah ±FXE

Thus

H= = 0

so that zoom climbs and dives are "abnormal" arcs. This also shows that

XE 0 0. It may be concluded that in the fortuitous event that both the

initial and final points lie in the right sense on one of the directed

arcs

dE
-=- = +F (1.16)
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that the optimal control is given by L = 0 and the optimal trajectory

by (1.16) together with y = ±90.

Solution of the nonlinear two-point boundary value system (1.8) +

(1.11) + (1.12) + (1.14) has proved to be a formidable computational

problem. Therefore, there have been many attempts to obtain approximate

solutions based on simplified equations. Many of these approximations

are critically discussed in reference 8. All of them are found to

exhibit undesirable features. The approximate methods most often employed

are based on neglecting certain of the terms in (1.8) (and hence also

in (1.11)). If right-hand side terms are neglected (e.g., the aero-

dynamic forces) the order of the system remains the same; this may be

termed regular approximation. If, however, terms on the left-hand side

are neglected, the order of the system is reduced and thus not all of

the boundary conditions can be met. This loss in boundary conditions

is usually accounted for by arbitrarily saying that the functions

instantaneously jump, usually at the boundaries, in just such a way as

to satisfy the boundary conditions. Hopefully, the approximation will

be accurate everywhere but in small neighborhoods of such jumps. It is

natural to call such approximations singular. Singular approximations

are a double-edged sword; the considerable simplification resulting from

decrease in system order is accompanied by a radical change in system

behavior.

If one takes the view that control variables are variables which

may be changed instanteously, then it is intuitively clear how singular

approximationsare to be made. A relatively "fast" state variable (i.e.,

a variable capable of changing across its range relatively rapidly
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compared with the other state variables) should be relegated 
to the role

of a control variable by neglecting its derivative term. Thus control

variables may be viewed as limiting or degenerate forms of state

variables. Such a variable will lose its boundary conditions and it must

be assumed that these variables jump to meet their boundary conditions.

The reason E has been substituted for V in the state equations for

the minimum time-to-climb problem is that this results in variables of

more widely separated "speed". It has been found in practical problems

for supersonic aircraft that y is relatively fast as compared with h

and that h is relatively fast as compared with E (V is about the same

speed as h). Thus there are two natural singular approximations for

this problem: In the "energy state" approximation, only E is a state

variable; in the "two state" approximation both E and h are state

variables. These two singular approximations in the minimum time-to-

climb problem are discussed and compared in the remainder of this paper.

There are two possible procedures for solving singular approximation

problems in optimal control. In the first of these, the necessary condi-

tions are formulated for the full system of equations and then the

appropriate terms on the left-hand side are neglected. 
In the second

procedure, the left-hand side terms are neglected 
previous to the

formulation of the necessary conditions. It can be shown that for the

energy state and two state approximations these two 
procedures are

equivalent.

In the first procedure, used for the energy state approximation in

this paper, the left hand sides of adjoint equations corresponding to

state equations with left hand sides neglected will be neglected. This
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step may be formalized by inserting a parameter into the state equations

prior to formulation of the necessary conditions in such a way that the

required approximation is obtained when the parameter is set to zero.

This procedure results in a problem which falls under the domain of

singular perturbation theory. This theory is presented in detail in

ref. 9 for linear systems.

The second procedure, used for the two state approximation herein,

results in a problem with state dependent control constraints. Such

problems are treated in section 3.6 of ref. 4. Comparing the two

procedures shows that the adjoint variables associated with the state

variables whose derivatives are neglected in the first procedure may be

viewed formally as the ordinary Lagrange multipliers arising in the

maximization of the Hamiltonian in the second procedure.

2. THE ENERGY STATE APPROXIMATION

Consistent with remarks in the previous section, the energy state

approximation is obtained as a limiting case of (1.8) + (1.11) + (1.12) +

(1.14) by letting h, -,h,*X 0. For (1.8),

O = V sin y

S= V (F - DL)

0 = 1 (L - cos y)

so that y = 0, L = 1 and

S== V (F - DL1) (2.1)



-12-

where we now regard F = F (E,V) and DL = D (E,V,1). From (1.11)
L1 L

0= XE - [v (F- DL1)]E

E - AE V (F - DL)]h (2.2)

0 = - XhV

The last of these gives Ah = o.

The appropriate boundary conditions are

E(o) = Eo; E( ) = Ef (2.3)

Equation (1.10) becomes

H = Xo + XE V (F - DL1) (2.4)

From H = 0, Xo < 0 (note that X0 = 0 is not possible) and our assumption

that V(F - DL) > 0, (2.4) implies that

XE > 0 (2.5)

Thus the first of (2.2) implies

W- [V(F - DL)JE = 0 (2.6)

The optimality condition (1.15) becomes an equation for A
aDL

XY = E V2  1 (2.7)

once (2.4) with H = 0 and X0o = -1 has been solved for XE. The second

of (2.2) is then satisfied identically.

It may happen that (2.6) has multiple roots. In this case the

root which maximizes H as given by (2.4) must be selected. If a "jump"

between roots occurs, V will be discontinuous (it is now, in effect, a

control variable) but the state variable E will be continuous. From

(1.9),
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()E = ()E ( E = -V( )E (2.8)

so that (2.6) may also be written

- [V(F -DL 1 E = 6 (2.9)

It is of interest to note that treating V as a control and E as a state

variable, and maximizing H as given by (2.4) with respect to V results

in a control law identical to (2.9). This control law gives V in terms

of E and has been called the "energy climb path". The total elapsed

time is obtained from (2.1) as

f (2.10)
Eo VF - DL1

where V = V(E) is obtained from (2.9).

Returning now to the original problem (1.8), it is seen that the

energy climb trajectory will not meet the boundary conditions on the fast

variable h. This was to be expected since the energy state approximation

is singular. Since h (or equivalently V) is now regarded, in a limiting

sense, as a control variable, its boundary conditions can be met by

instanteous changes during which the state E remains constant.

Consider the resulting trajectories in the (h,V) plane. "Control

law" (2.9) may be written in terms of V and h as

V [V(F - D L1 V (F - DLl h [v(F - DL1 ( )E

FDL+V aF - V2 aF 3 V = 0 (2.11)_ _ DL1 _ V2 7h5h - a --- /
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Denote this curve by fE (h,V) = 0; as discussed earlier, this function

may be discontinuous in both arguments if multiple roots occur. The

initial arc lies on the constant energy contour through the initial

point

fo(h,V) = 1/2 (Vo2 - V2) + (ho - h) = 0 (2.12)

Similarly, the final arc lies on

ff(h,V) = 1/2 (Vf 2 - V2) + (hf - h) = 0 (2.13)

Under the assumption that fE(h,V) = 0 as described above exists in 0

and intersects both fo(h,V) = 0 and ff(h,V) = 0, an energy state approxi-

mate minimum time-to-climb trajectory exists. Such a trajectory is shown

schematically in Figure 1 for the case of one discontinuity in fE(h,V).

The following observations are now made:

(1) The energy state approximation (2.1) may be obtained from

(1.8) by setting y = 0 in (1.8); this provides an alternate way of

looking at this approximation.

(2) The control law (2.9) may be determined directly without

recourse to the maximum principle. The time-to-climb is obtained from

(2.1) as E

dE

E V(F - DLI)

This integral will be minimized when V (F - DL1) is maximized with

respect to V for each E, giving (2.9). This may be interpreted as

maximizing "excess power" V (F - DL) while holding E constant and was

the argument originally used by Rutowski.2

(3) The portions of the trajectory on which E = constant (such as

on arcs fo(h,E) = 0 and ff(h,E) = 0) have undesirable features. In the

first place, such arcs are traversed in zero elapsed time. It is often
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said that in energy state approximations, one may "trade h for V with

no penalty t." Further, the implicit assumption that y is small is

violated; in fact, the condition Isin yJ 5 1 is violated. To see this,

use (1.6) to compute the slope

dh V sin y V
dV F - DL - sin y F - DL

1 1
sin y

Thus, starting at a given point (h,E(h,V),l) in 50 there is an admissible

region for trajectories in the (h,V) plane obtained by letting y range

from -90* to +900. On the other hand, from (1.7),

(dh -

which does not lie in the admissible region for F - DL > 0. The

situation is illustrated in Figure 2.

(4) For low-speed aircraft, a "quasi-steady-state" approximation

is often employed in which changes in velocity and flight path angle

are ignored in comparison to changes in altitude. Setting V = 0 and

= 0 in (1.6) leads to

dh
ho VF - D -1)

Thus for minimum time-to-climb €*,

[V (- 1 h = 0

F [(F - D + av = 0 (2.15)

Comparing (2.15) with (2.11), it is seen that the former neglects a term

which may be expected to be small for smallvelocity.
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(5) Since F and DL are usually given in terms of h' and Mach

number M,

V'
M= (2.16)

a(h')

it is useful to write the energy climb path (2.9) in terms of h' and M.

The result is

1 R1
F- aM [ + M2 

- aM 1M = 0 (2.17)

(6) From (2.4) and (2.5) it follows that 8 = BM on the energy climb

path.

(7) Since the energy state formulation is independent of y it

follows that the solution of the problem with specified boundary values

of y is the same as that for y free.

(8) From (2.11) it is seen that if F and DL1 are the same

exponential function of h then (2.11) is no longer a function of h and

the energy climb path is a vertical line in the (h,V) plane.

(9) A graphical interpretation of the energy state solution is

presented in reference 10. Referring to (2.4), let

(E,V) = ; (E,V) = F - D
V L

Then

H = -1 + XE

with XE > 0 so that the optimality condition is

V = arg Max -

Thus the optimal value of V is that which maximizes the slope of

p = p (E, ) with E fixed as shown on Figure 3.
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3. THE TWO-STATE APPROXIMATION

In the two state approximation, it is assumed that drag due to

lift DL is negligibly small and that y is a fast variable as compared

with h and E. Let y, DL - 0 in (1.8) to get

h = V sin y

E = VF

0 = 1 (L - cos y)

so that L is uncoupled from the state equations. It is convenient to

let

u = sin y, lul 1I (3.1)

Then the state equations are

h = Vu
(3.2)

E = VF

and the lift is given by

L = V1 - u2  (3.3)

The adjoint equations associated with (3.2) are

h _= (3F) E u - XE V - ) E)

(3.4)

E ~h U XE \ E h

From (1.12) the boundary conditions are

h(0) = ho h( ) = hf (3.5)

E(0) = E0  E(0) = Ef

so that all state variable boundary conditions have been retained. The

H function is
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H = X0 + Xh Vu + XE VF (3.6)

We have a system with state (h,E) and control u; the part of H explicity

a function of u is

H = Xh Vu (3.7)

Since V > 0, the optimality condition is

-1 if Xh < 0

u = ? if Xh - 0 (3.8)

+1 if Xh > 0

so that Xh is a "switching function."

The possibility of a singular arc, on which

Xh 0 (3.9)
h-

is now investigated. If (3.9) holds, (3.4) become

0 _ (VF)

Eah (3.10)

E= XE BE

Equation (3.6) is

H = Xo + XE VF (3.11)

Since H = 0, X < 0 (Xo = 0 is not possible in this case), this gives

XE = 1L (3.12)

so that XE > 0. Thus the first of (3.10) implies that

ah [VF]E = 0 (3.13)

on the singular arc, if it exists. To find u, differentiate (3.9) twice:

h Xh V av X aO(VF)
h h ah E Dh
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S 2v* a 2V

Xh - h- u - h h2 haE u

XaV * (VF) a2(VF) + 2 (VF) f
ah E h E h2  + hE

[ 8 2 (V F ) V 2 (FV) VF 0 (3.14)

Xh = - XE h2 Vu + haE F = 0 (3.14)

Since XE # O, this implies

F [a2 (FV)/ahaE]
u = - (3.15)

a2 (FV)/ah2

provided this does not violate 1u151. The singular arc must satisfy an

additional necessary condition5'1 1 called the Kelley condition or the

strengthened convexity condition. Since u appears linearly in

"h d2  BH the singular arc is of order m = 2. The Kelley conditionXh = 3u

is

< 0 (3.16)
au

which, from (3.14), leads to

a2 (FV) > 0 (3.17)
ah2

Note that equality is not allowed in view of (3.15). It may be concluded

that the arc given by (3.13) is extremal if (3.17) and the condition

F [a 2 (FV)/ahaE]
-1 - < 1 (3.18)

82(FV)/ah 2

are satisfied.

Two-state approximate solutions are formed by joining arcs u = +1,

u = -1, and- [VF]E = 0 in such a way that minimum time results anduh =VI -I0n
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the boundary conditions are satisfied. If (3.13) has multiple roots,

this process may become quite complicated since switching between roots

occurs along paths u = ±1 and takes a non-zero elapsed time. If (3.13)

has only a single root (defines a single valued function h = h (E)),

then a solution might appear in the (h,V) plane as shown in Figure 4.

Since m/2 = 1 is odd, the control u will in general be discontinuous at

the junctions of arcs u = ±1 with the singular arc. 5

The following observations may be made.

(1) The critical assumption is the neglecting of DL; if this is

done in (1.8) the first two equations become uncoupled from the third,

the latter being now regarded as an equation for L. However, L will

now have to be regarded as unbounded since y will be discontinuous.

(2) Setting DL, y - 0 in (1.6) leads to the two state approxima-

tion as would be expected.

(3) The singular arc (3.13) in terms of E and V is

V [VF]E = 0 (3.19)

in terms of h and V is

F + V h 2( ) = 0 (3.20)

and in terms of h' and M is

F + + M2 _aF M' =0 (3.21)

(4) The equation for the singular arc may be determined by a

Green's theorem argument. 12 To see this, set DL = 0 in the first two

of (1.6), eliminate sin y, and evaluate the resulting line integral over

a closed curve in the (h,V) plane.
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t V= [ dh + -dV

By Green's theorem, this is equivalent to the surface integral over the

enclosed area:

t dhdV

By considering various closed curves, optimal control may be deduced;

in particular, the "critical arc" is

aV - ah F o

or

F+V h. -V2 =0

which is the singular arc (3.20).

(5) On the arcs u = +1, the full equations of motion (1.8) and the

complete necessary conditions are satisfied.

(6) Since u is discontinuous at the junctions of u = +1 with the

singular arc, the jumps in the fast variable y occur in the interior of

the trajectory and not at the boundaries t = 0 and t = 4.

(7) Since XE>0 on the singular arc, it follows that 8 = OM*

(8) Since h and u do not appear in the second of (3.2), it is

tempting to treat E as a single state variable and V as the control.

This leads directly to (3.13) but does not give the arcs u = ±1

necessary to meet the boundary conditions. This happens of course

because h must be treated as a state variable due to (3.5).

(9) Although this method technically neglects drag due to lift,

DL, in practice it is desirable to include an average amount of drag

due to lift, say DL at L = 1.
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(10) Since y is treated as a control variable, boundary conditions

on y are met by instantaneous changes and there is no difference between

the cases of free and specified boundary values of y in the two-state

approximation.

(11) From (3.20) it is seen that if F is an exponential function

of h then (3.20) is no longer a function of h and the singular arc is

a vertical line in the (h,V) plane.

(12) From (1.8) the assumption that y is a fast variable worsens

as V increases so that the two-state approximation is of doubtful value

for hypersonic or higher speeds.

4. THE MODIFIED TWO-STATE APPROXIMATION

Both the energy state and two-state approximations have been shown

to exhibit undesirable features. The two-state approximation employs

one more state variable than the energy state and thus more accuractely

models the system dynamical behavior. The disadvantage of the two-state

approximation is that integrations (1.16) are required to obtain the

connecting arcs to the singular arc, whereas the connecting arcs in the

energy state approximation are algebraic relations. These integrations

however are quite simple and there appears to be no reason to use the

energy state approximation as compared with the two state.

There are two undesirable features of the two-state approximation.

First is the absence of drag due to lift. This may be at least partially

compensated for by adding the drag due to lift at L = 1 to the singular
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arc equation. From (2.11) and (3.20) we see that if this is done the

energy climb path is identical to the singular arc.

The second undesirable feature is the jumps in y at the junction

points between the connecting arcs sin y = +1 and the singular arc and,

for the case of fixed initial and final y, at the endpoints. A time

correction for these jumps may be derived as follows. At a junction

point, h and E will to a first approximation remain constant while y

changes rapidly, say from yl to y2. Referring to (1.8), we have a

single state variable system with control L

=1
y = V (L - cos y)

Solving for the elapsed time t2 - tl

Y2  dy
2 - t L - cos y

If L is bounded, say Lm < L < LM, then, for minimum t2 - t

L* = { LM s 2 Y1

Lm if 2 < 1

so that

dy
2 t Y L* - cos y

2V 2 1 tan - -1 -

t -t = tan- I - tan-1- tan
2 1 L 2 - 1 L* - 1 L* - 1

(4.1)

provided that IL*I>1. Note that if ILMI, ILml>>l then this is

approximately

t - t =
1 L*
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In summary, the modified two-state approximation is formed by

"patching together" the following: a) the energy climb path (2.11),

b) the arcs sin y = +1, and c) the arcs characterized by h = constant,

E = constant, L = L* which take time t - t as given by (4.1) and which
2 1

are needed at the junctions of arcs a) and b) and, if yo and yf are

specified, at the endpoints. This approximation may be expected to be a

good one provided that the time spent on arcs c) is small compared with

that spent on a) and b). From (4.1) the approximation will be poor when

V is large or when (L* - 1) is small.

5. COMPARISON OF APPROXIMATIONS - A NUMERICAL EXAMPLE

The three approximations previously discussed have been programmed

for a digital computer. The computer program computes the path in the

(M,h') plane and the minimum time-to-climb 0*. The most general case

is shown in Figure 5. It may happen that one or more of the arcs shown

will be absent in a given example. Note that the condition h' =

constant > 0 has been imposed for physical reasons.

To gain insight into the nature of the paths which result from the

approximations and to compare these approximations with each other, a

numerical example is now considered. The data is that of "airplane 2"

of ref. 3 for which the aerodynamics are represented by

L' = CL a 1/2 pV' 2S

D' = (CD + n CL a2) 1/2 pV' 2S
0 a



-25-

Figure 6 shows the singular arc (3.21) and the energy climb path (2.17),

both of which are single valued for this airplane. Since the difference

in these two curves is that DL = 0 in the former and DL = DL1 in the

latter, it may be concluded that drag due to lift has a very small

effect.

Both the energy state and two-state trajectories for the minimum

time-to-climb between h' = 20,000 ft, M0 = 0.4 and h' = 80,000 ft,

Mf = 1.0 are shown in Figure 7 where the elapsed times on the various

arcs are indicated in parentheses. The fact that the energy state

trajectory traverses the arcs E = constant in zero elapsed time is

offset to some extent by the fact that this trajectory remains on the

arc h' = constant and the energy climb path longer than the two-state

trajectory remains on h' = constant and the singular arc. However #*

as predicted by the energy state approximation is significantly lower

than that predicted by the two state. The closer to the energy climb

path that the end points lie the less this discrepancy will be. The

modified two-state path is the same as the two-state path except that

the time-to-climb is 157 seconds instead of 132 seconds.

Figure 8 shows the energy time histories of the energy and two-

state trajectories. Since E is a state variable in both cases, E(t) is

continuous. These histories agree very closely except at the terminal

point where additional time must be spent by the two-state trajectory

in meeting the terminal condition on h'.

The minimum time-to-climb 0* as computed by the various approxima-

tions is presented in Table I. The energy state and two-state cases

are as discussed before. The third column of the table shows the
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results of including DL at L = 1 in the singular arc computation

(i.e., using the energy climb path). Comparison shows that inclusion

of drag due to lift results in a negligible change in *. The elapsed

times of the modified two-state approximation are shown in the last

three columns. For this approximation, the cases of free and fixed

boundary values of y must be distinguished. In the first case, it is

seen that accounting for the time to change y at points 2, 3 and 4 has

added 22 seconds to c*, a significant amount. The requirement for level

flight at the beginning and end points adds another 24 seconds. Note

that the elapsed time in changing y is higher at the higher velocity

points. It may be concluded that neglecting the time required to

rotate a vehicle is not generally a good approximation at high speeds.

Figure 9 illustrates alternate types of trajectories which may

occur. Type I is that previously discussed. In Type II, arc 2-3 has

vanished and in Type III arc 1-2 has vanished. Also shown is 4* for the

modified two-state approximation for each trajectory.

The time histories of energy, flight path angle, altitude, and

Mach number are shown in Figure 10 parts a, b, c, and d respectively for

the Type I modified two-state trajectory of Figure 9. Figure 10 illus-

trates the nature of minimum time-to-climb trajectories for supersonic

aircraft: The initial portion of the trajectory (about two thirds

of the total time) is essentially a low, constant altitude acceleration

during which speed and energy are steadily increased. During the final

portion of the trajectory, a "zoom" maneuver is performed in which speed

is traded for altitude with energy remaining approximately constant.
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The steepest descent trajectory optimization program of reference 13

was applied to the example discussed above to provide a standard solution

for comparative purposes. For the present application, the steepest

descent solution used equations describing motion of a constant weight

vehicle flying in a great circle path over a spherical, non-rotating

earth; using these assumptions in (1.1) gives

h' = V' sin y

' = - (T' cos a - D') - g sin y

Y (L' + T' sin a) - + cos y
WV'1

The difference between this system of equations of motion and the system

(1.2) is relatively small. For the steepest descent solution, yo was

fixed at zero and yf was free.

The steepest descent path is shown in Figure 11 along with the

approximate paths. The agreement is quite good, the major difference

being the relative smoothness of the steepest descent path. The times-

to-climb are compared in Table II where it is seen that the modified

two-state method is in extremely good agreement with the steepest

descent value. The other two approximations underestimate the time by

a significant amount.

One of the most important aspects of a preliminary design study

is a sensitivity analysis, i.e., a determination of those parameters

which have strong effects on performance. Use of the modified two-state

approximation in a sensitivity analysis is illustrated in Figure 12 for

the Type III trajectory of Figure 9. It is apparent that the climb
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performance as measured by @* is very sensitive to thrust T', slightly

less sensitive to weight W and final altitude hi, and not sensitive to

the aerodynamic parameters CL and n.

CONCLUDING REMARKS

The minimum time-to-climb problem has been formulated as a third

order system. Various approximate solutions based on reduced order

systems have been developed, discussed, and compared. It was found that

the energy state approximation has undesirable features and may

significantly underestimate the minimum time-to-climb. The two-state

approximation is an improvement over the energy state but has the

undesirable feature of resulting in a discontinuous flight path angle

history. The modified two-state approximation is developed to overcome

this deficiency and is thought to be the superior approximation.

Consideration of a numerical example showed good agreement between the

values of minimum time-to-climb as predicted by the modified two-state

approximation and by a steepest descent solution. A sensitivity

analysis indicated thrust and weight had a large effect on climb

performance.
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TABLE 1.- MINIMUM TIME-TO-CLIMB BY VARIOUS APPROXIMATIONS.

Mod two state Mod two state Mod two state
Time, sec Energy Two state Two tate L 7, L , - L 7,L -2 L L = 7, LM7 , -2

state (DLO ) (DLDLI) y, yf free Yo=0, yf free yea yfaO

t1  O 0 0 0 8 8

t12 0 14 14 14 14 14

t2  0 0 0 8 8 8

123 46 36 36 36 36 36

t3  0 0 0 2 2 2

t34 58 44 44 44 44 44

t4  0 0 0 14 14 14

t45 0 38 39 39 39 39

t 5  0 0 0 0 0 18

Minimum
time - to 104 132 133 157 165 183

climb, *

tNM = Elapsed time on arc

tN = Elapsed time at point@



TABLE 2.- COMPARISON OF MINIMUM TIME-TO-CLIMB BY VARIOUS APPROXIMATIONS
WITH STEEPEST DESCENT SOLUTION, yo = 0, yf FREE.

Minimum
time-to-climb,

#* sec

Energy statet 104

Two stetet 132 "

Mod. two state 165

Steepest descent 162

Not influenced by boundary conditions on y
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FIGURE I.- Sketch of a typical energy-state minimum time-to-climb path.
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dV 1-(F-DLI )

Addmissible
region G

dh V
dV I+(F-DLI

)
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FIGURE 2.- Sketch showing relation of constant energy paths to
admissible region.



,= F-DLt

FIGURE 3.- Graphical construction of energy-state approximation.
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FIGURE 4.- Sketch of a typical two-state minimum time-to-climb path.



(2.13) or (1.16)

(2.17) or (3.21)

(2.12) or (1.16)

h = constant

0
M

FIGURE 5.- Sketch of minimum time-to-climb path in (M,n') plane.
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FIGURE 6.- Singular arc and energy climb path.
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FIGURE 7.- Comparison of energy state and two-state trajectories.
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FIGURE 8.- Energy time histories.
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FIGURE 9.- Modified two-state trajectories.
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FIGURE 10.- Time histories (concluded).
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FIGURE 11.- Comparisons of approximations with steepest descent.
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FIGURE 12.- Sensitivities.
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FIGURE 12.- Sensitivities (concluded).


